Dog No .					Dec.	
Reg. No.:			w 7	- 1	 - 7	
		-		0 2		

Question Paper Code: 53319

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Seventh/Eighth Semester

Mechanical Engineering

ME 6703 — COMPUTER INTEGRATED MANUFACTURING SYSTEMS

(Common to Mechanical Engineering/Mechanical and Automation Engineering/Robotics and Automation Engineering)

(Regulation 2013)

(Also Common to: PTME 6703 — Computer Integrated Manufacturing Systems for B.E. (Part-Time) Sixth Semester – Mechanical Engineering – Regulation 2014)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. List down the applications of Concurrent Engineering in the manufacturing field.
- 2. State the objectives of implementation of CIM.
- 3. Differentiate between Aggregate Production Planning and Master Production Schedule.
- 4. The annual demand for a certain item made-to-stock = 15,000 pc/yr. One unit of the item costs \$20.00 and the holding cost rate = 18%/yr. Setup time to produce a batch = 5 hr. The cost of equipment downtime plus labor = \$150/hr, Determine the economic order quantity and the total inventory cost for this case.
- 5. Mention the factors to be considered in selection of coding system.
- 6. Define the term Key machine in the Cellular Manufacturing
- 7. Write the difference between FMC & FMS systems.
- 8. Name the applications of AGVs in the manufacturing field.

- 9. Distinguish between repeatability and accuracy in a robotic manipulator.
- 10. How do the sensors are used in the Robotics?

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Discuss in detail about the Computerised elements of CIM system with the neat diagram. (13)

Or

- (b) Define the term JIT and explain the KANBAN System used in JIT with simple diagram showing the flow of materials. (13)
- 12. (a) Illustrate the steps involved in Variant Computer Aided Process
 Planning System. (13)

Or

- (b) Illustrate the following Phases of Shop Floor control:
 - (i) Order Scheduling

(8)

(ii) Order Progress.

(5)

13. (a) Apply the ROC Technique to the Part-Machine Incidence Matrix in the following table to identify logical part families and machine groups. Parts are identified by letters and machines are identified numerically.

		Parts						
Machines	Α	В	C	D	E			
1	1							
2		1	11.4	Called U.S.	1			
3	1	Jus.		1				
. 4		1	1					
5				1				

Or

- (b) Four machines used to produce a family of parts are to be arranged into a GT cell. The From-To data for the parts processes by the machine are shown in the table below.
 - (i) Determine the most logical sequence of machines for this data using Hollier Method 2.
 - (ii) Construct the flow diagram for the data, showing where and how many parts enter and exit the system.
 - (iii) Compute the percentage of in-sequence moves and the percentage of backtracking moves in the solution.

(iv) Develop a feasible layout plan for the cell.

То									
From	1	2	3	4	5				
1	0	10	80	0	0				
2	0	0	0	85	0				
3	0	0	0	0	0				
4	70	0	20	0	0				
5	0	75	0	20	0				

14.	(a)	Summarize	the following	FMS	Layouts	with	the	neat	sketches.
-----	-----	-----------	---------------	------------	---------	------	-----	------	-----------

- (i) Open field layout (4)
- (ii) Ladder Layout ' (4)
- (iii) Robot Centered Layout. (5)

Or

- (b) Summarize the following three technologies used in AGVs Guidance Systems.
 - (i) Imbedded guide wires (4)
 - (ii) Paint strips (4)
 - (iii) Self-guided vehicles. (5)
- 15. (a) Explain the following base on Robotics.
 - (i) Configuration
 - (ii) Work volume
 - (iii) Generation.

Or

- (b) Explain the following with neat sketch.
 - (i) CAM Actuate gripper
 - (ii) Vacuum gripper
 - (iii) Magnetic gripper.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Describe the Direct Kinematic equation of SCARA Robot using D-H-Transformation matrix.

Or

(b) Discuss a case study of Robotics Applications in Bio Medical with suitable diagram.

where the part of the description where the same way of